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The segmentation of T1-weighted images into gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF) is a fundamental

processing step in neuroimaging, the results of which affect many

other structural imaging analyses. Variability in the segmentation

process can decrease the power of a study to detect anatomical

differences, and minimizing such variability can lead to more robust

results. This paper outlines a straightforward strategy that can be used

(1) to select more optimal data acquisition and processing protocols and

(2) to quantify the impact of such optimization. Using this approach

with multiple scans of a single subject, we found that the choice of a

segmentation algorithm had the largest impact on variability, while the

choice of a pulse sequence had the second largest impact. The data

indicate that the classification of GM is the most variable, and that the

optimal protocol may differ across tissue types. Therefore, the intended

use of segmentation data should play a role in optimization. Examples

are provided to demonstrate that the minimization of variability is not

sufficient for optimization; the overall accuracy of the approach must

also be considered. Simple volumetric computations are included to

illustrate the potential gain of optimization; these results show that

volume estimates from optimal pathways were on average three times

less variable than estimates from suboptimal pathways. Therefore, the

simple strategy illustrated here can be applied to many studies to

optimize tissue segmentation, which should lead to a net increase in the

power of structural neuroimaging studies.
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Introduction

Longitudinal and multi-center structural neuroimaging studies

have more power than smaller studies to conduct sophisticated

studies of basic neuroanatomy and clinical disorders (Mazziotta

et al., 1995; Giedd et al., 1996; Coffey et al., 2001; Courchesne

et al., 2001; Hulshoff Pol et al., 2002; Salat et al., 2004). During

the course of such studies, practical methodological issues often

arise because these studies rely on the combination of data from

different scanners or upgrades of the same scanner. While

designing large-scale studies, investigators often need to decide

on a pulse sequence and parameters, as well as the specific data

processing protocol to use. Ideally these decisions would be made

by acquiring and analyzing data from a ‘‘gold standard’’ that has

the same complexities as a living human brain but with properties

that are explicitly and thoroughly known. Although there is no

such gold standard, several alternative strategies exist for the

validation of a given data acquisition or analysis strategy:

performance on a phantom, comparison to manual delineation,

various data simulation techniques, or simple visual inspection.

These methods are generally used to assess the accuracy of a

technique; however, for a multi-center or longitudinal study, the

reproducibility of a given result is equally important. The primary

objective of the current study is to devise a strategy that can be

used to evaluate the reproducibility of a data acquisition and/or

analysis protocol.

The segmentation of a T1-weighted image into gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF) can be

thought of as a signal detection problem, where the signal is the

MR intensity of each tissue type. There are many sources of

noise, such as partial voluming effects and noise due to the

scanning environment. In a previous study, Holmes et al. showed

that the process of averaging multiple scans of a single subject

http://www.sciencedirect.com
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results in a higher signal-to-noise-ratio (SNR), as well as an

increased contrast between gray matter and white matter (Holmes

et al., 1998). In the current study, twenty images of one subject

have been spatially aligned and averaged to create a ‘‘gold

standard’’ image that has a high SNR. This gold standard brain

can be used to quantify the reliability of an analysis technique,

such as tissue segmentation, by comparing the final segmentation

maps of any individual scan to that of the gold standard brain.

The individual scans are all from the same subject and are all

spatially aligned; therefore, any differences between an individual

segmentation map and that of the gold standard can be attributed

to the lower SNR and/or contrast that is present in the individual

scans. Thus, if one technique reliably yields individual segmen-

tation maps that are more similar to the gold standard

segmentation map, then the results from that technique are more

likely to be reproducible. In practice, investigators can collect

multiple scans of one subject at the beginning of a large-scale

study and use this strategy to choose an optimal data acquisition

and/or data processing protocol guided by reliability. For

example, if two pulse sequences are being considered for use

in a large-scale study of GM volumes, this strategy can be used

to determine if one pulse sequence yields GM volumes that are

less sensitive to noise than a second pulse sequence. Similarly,

this strategy can be used to measure how much the classification

of any particular tissue type (e.g., GM) depends on any

processing step (e.g., skull stripping).

While the focus of this study was reliability, it is important not

to blindly choose the most reliable protocol without also

considering the accuracy of that pathway. An analysis pathway

can be reliable by consistently making mistakes, e.g., consistently

classifying the thalamus as WM. At the very least, the most reliable

pathways must be visually inspected for accuracy; ideally, the

accuracy should be evaluated quantitatively.
Methods and materials

Experiment overview

A global overview of the data acquisition and analysis strategy

is shown in Fig. 1. Twenty T1-weighted scans (10 MPRAGEs and

10 SPGRs) were collected from one subject and registered into a

common space. A gold standard image was created by averaging

the individual scans in order to achieve the best SNR (Figs. 1A and

2). Each image volume (individual images and the gold standard)

was then processed in 3 steps: (1) noise reduction (e.g., correction

for magnetic field inhomogeneities); (2) skull stripping; and (3)

segmentation into GM, WM, and CSF. Several publicly available

published algorithms were used for each processing step. Some of

the software packages were also implemented using multiple

values for one or more parameters (Fig. 1B). The segmentation

map of each individual scan from each unique acquisition/analysis

pathway was then compared to the segmentation map of the

identically processed gold standard image. The comparison of an

individual to the gold standard was done using a d-prime analysis:

d-prime = z score (hit rate) � z score (false alarm rate), where the

hit rate and false alarm rates are treated as probabilities and the z

scores are computed from a standard normal distribution with unit

variance. The hit rate is defined as: (hits) / (hits + misses); the false

alarm rate is defined as: (false alarms) / (false alarms + correct

rejections) (Fig. 3). The use of d-prime in this context derives from
signal detection theory (Green and Sweets, 1966). One benefit of

this type of analysis is that the robustness of the segmentation of an

image can be reduced to three numbers: one each for GM, WM,

and CSF. The resulting d-primes were then used in two ways: (1) to

identify the optimal acquisition and analysis protocol tested (Figs.

4–6); and (2) to evaluate the relative impact of each acquisition/

analysis step on the final segmentation map (Figs. 7 and 8). Finally,

an example is provided to show how these differences in

segmentation can affect volumetric analyses (Figs. 9 and 10).

For this example, the following regions were identified and the

gray matter volume was computed: cerebellum, frontal lobe,

parietal lobe, temporal lobe, and occipital lobe. The dependence

of the measurement error of the GM volume of each lobe on the

GM d-prime was computed.

Data collection

One healthy normal volunteer (male, age 43) was scanned a

total of 20 times during two separate sessions using a 1.5-T

Siemens Sonata scanner in accordance with the rules and policies

of the UCLA Institutional Review Board. Each session consisted

of five scans each of MPRAGE (turboFLASH) and SPGR

(gradient echo) pulse sequences in an alternating sequence. The

data were collected in an interleaved fashion in order to minimize

any time-varying confounds (e.g., movement, scanner drift).

During the first session, the magnet was shimmed once at the

beginning of the session; in the second session, the magnet was

re-shimmed between each scan. The MPRAGE scans were

collected sagittally with a 256 � 256 � 160 matrix, with 1.0

mm3 resolution (TI/TE/TR/FA = 1100/4.38/1900/15-) (Fig. 2A).

The SPGRs were also collected sagittally with a 256 � 256 �
160 matrix and 1.0 mm3 resolution (TE/TR/FA = 9.2/22/30-)
(Fig. 2B). The MPRAGEs were collected using 2 averages,

yielding a total scan time of 16:16 min; the SPGRs were

collected using 1 average, yielding a total scan time of 15:00

min. The averaging strategy of the MPRAGE was used in order

to make the total scan time as similar as possible across the two

different pulse sequences.

Alignment of scans

Each of the 20 scans was aligned to all of the other scans scan

using a 6-parameter, rigid-body registration (AIR 5.2.5; Woods et

al., 1998a). Any discrepancies in the pairwise registrations were

reconciled to create one transformation matrix for each pair of

images (Woods, 2003; Woods et al., 1998a); for example, the

final transformation matrix for scan 1 to scan 2 used all of the

information from registering scan 1 to scan 3, scan 3 to scan 2,

etc. All of the transformation matrices were used to define a

‘‘common, average’’ space, into which all 20 of the images were

resliced using a 3D scanline chirp-z interpolation model (Woods

et al., 1998a). Then each image was intersected with a mask of

the common coverage, so that each final image only contained

data in voxels where every image contained data. Finally, all 20

images were averaged together to create a gold standard brain

(Fig. 2C). The goal of creating the gold standard brain in this

way was to avoid introducing a bias in the average brain towards

either pulse sequence, and also to have one common gold

standard that could be used for all of the images. Through visual

inspection, it was verified that there were no non-linear

distortions between the two pulse sequences; this was verified



Fig. 1. Experimental Overview. (A) 20 inputs volumes were collected from one subject: 10 MPRAGEs and 10 SPGRs. All possible pairwise, rigid-body

registrations of the 20 input volumes were computed and reconciled to define a common space into which each brain was resliced, and the outputs were

averaged to create a ‘‘gold standard’’ image with high SNR. The individual volumes and the gold standard were all segmented in several ways (B), and the

results were compared by computing a d-prime (Fig. 3). The d-primes were used in three ways: (1) to choose an optimal processing sequence (Figs. 4–6), (2) to

evaluate the impact of each acquisition/analysis step on the final segmentation result (Fig. 8), and (3) to correlate variability in the segmentation process with

variability in volumetric measurements (Figs. 9 and 10). (B) The data processing protocols are exemplified for one input image (the same protocols were used

for each of the 10 MPRAGEs, the 10 SPGRs, and the gold standard volume). Each volume was processed with 3 noise reduction algorithms (1 parameter set

for MNIN3, 2 parameter sets for SUSAN, 1 parameter set for BFC); 4 skull-stripping algorithms (3 parameter sets for BET, 1 each for BSE, WS, MCSTRIP);

and 4 segmentation algorithms (3 parameter sets for FAST, EMS, SPM, and 1 for PVC). All of the possible combinations of algorithms were used (see text for

details).
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by creating averages of all of the SPGRs and all of the

MPRAGEs separately and comparing those averages to the gold

standard average of 20 images.

Noise reduction

Intensity variations due to hardware, such as radio frequency

(RF) coil non-uniformities, add noise to structural images that

can adversely affect the performance of downstream processing,
such as skull stripping and segmentation (Simmons et al., 1994;

Cohen et al., 2000; Jezzard, 2000). Three noise reduction

algorithms were evaluated in this study. The non-parametric

non-uniform intensity normalization algorithm (MNIN3; Sled et

al., 1998) models the intensity non-uniformity as a smooth

multiplicative field. The second algorithm examined was bias

field correction (BFC; Shattuck et al., 2001), which also models

the intensity non-uniformities as a multiplicative bias field but

computes these models on local neighborhoods. It should be



Fig. 2. Data Acquisition. (A) Sample MPRAGE image. (B) Sample SPGR image. (C) Gold Standard Image (average of 10 MPRAGEs and 10 SPGRs) with

high SNR.
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noted that BFC is designed to be used after skull stripping the

data, an issue which is addressed in more detail in the Results

section. A third algorithm, smallest univalue segment assimilat-

ing nucleus (SUSAN; Smith and Brady, 1997), uses a strategy of

feature detection (edges and corners) to choose a local smoothing

neighborhood to reduce the high-frequency noise present in the

images.

MNIN3 (Sled et al., 1998) was applied using the stopping

criterion of 0.0001 and a FWHM value of 0.04. BFC (Shattuck et

al., 2001) was applied using the default parameters. The third

algorithm, SUSAN (Smith and Brady, 1997), was used both in 2D
Fig. 3. Calculation of D-prime. The GM, WM, and CSF maps of each individual

image. For each tissue type, every voxel in the image is labeled either A, B, C, or

individual), B is False alarm (e.g., classified not-GM in the gold standard, GM i

individual), and D is Correct Rejection (e.g., classified as non-GM in both the go

type. For every volume and every possible processing pathway, 3 d-primes are co

between the z score of the false alarm rate from the z score of the hit rate. The hit

false alarms/(false alarms + correct rejections).
mode and 3D mode (SUSAN2d and SUSAN3d) with a threshold

value of 10.

Skull stripping

For almost all data analysis procedures, the skull must be

removed from the image. Several methods exist for removing the

skull; only automated methods were included in this study. The

first algorithm examined was the brain extraction tool (BET;

Smith, 2002), which uses a surface model approach that starts by

finding the center of gravity and tessellating the surface using
image are compared to the identically processed maps of the gold standard

D where: A is Miss (i.e., classified GM in the gold standard, not-GM in the

n the individual), C is Hit (classified GM in both the gold standard and the

ld standard and the individual). The same process is repeated for each tissue

mputed (one for each tissue type). The d-prime is defined as the difference

rate is defined as: hits/(hits + misses), and the false alarm rate is defined as:



Fig. 4. Maximum d-prime for GM: comparison of MPRAGE and SPGR. (A) Tissue classification of the gold standard image segmented with the processing

pathway associated with the maximum d-prime for GM: MNIN3, BSE, SPM50. Blue voxels were classified as GM, yellow voxels WM, and orange voxels

CSF. For this pathway, the MPRAGE pulse sequence led a higher d-prime than the SPGR pulse sequence (P < 0.001). (B) Hits: MPRAGE. (C) False alarms:

MPRAGE. (D) Hits: SPGR. (E) False alarms: SPGR. In panels B–E, the color of each voxel (see side scale) codes the number of images in which the voxel

was labeled as hit (for panels B and D) or false alarm (for panels C and E).
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connected triangles. A second approach, brain surface extraction

(BSE; Sandor and Leahy, 1997; Shattuck et al., 2001), is primarily

based on an edge detection approach combined with morphological

procedures. The Minneapolis consensus strip (McStrip; Rehm et

al., 2004) is a hybrid algorithm that involves warping to a template,
Fig. 5. Maximum d-prime for WM: comparison of MPRAGE and SPGR. (A) Tiss

pathway associated with the maximum d-prime for WM: BFC, WS, FAST10. Blue

For this pathway, the MPRAGE pulse sequence led a higher d-prime than the

MPRAGE. (D) Hits: SPGR. (E) False alarms: SPGR. In panels B–E, the color of

was labeled as hit (for panels B and D) or false alarm (for panels C and E).
intensity thresholding, and edge detection. The last algorithm

tested uses a hybrid approach that combines watershed algorithms

and deformable surface models (WS; Segonne et al., 2004).

BET (Smith, 2002) was applied with three different threshold

gradients, which were optimized for each pulse sequence
ue classification of the gold standard image segmented with the processing

voxels were classified as GM, yellow voxels WM, and orange voxels CSF.

SPGR pulse sequence (P < 0.04). (B) Hits: MPRAGE. (C) False alarms:

each voxel (see side scale) codes the number of images in which the voxel



Fig. 6. Maximum d-prime for CSF: comparison of MPRAGE and SPGR. (A) Tissue classification of the gold standard image segmented with the processing

pathway associated with the maximum d-prime for CSF: MNIN3, McStrip, FAST30. Blue voxels were classified as GM, yellow voxels WM, and orange

voxels CSF. For this pathway, the MPRAGE pulse sequence led a higher d-prime than the SPGR pulse sequence (P < 0.001). (B) Hits: MPRAGE. (C) False

alarms: MPRAGE. (D) Hits: SPGR. (E) False alarms: SPGR. In panels B–E, the color of each voxel (see side scale) codes the number of images in which the

voxel was labeled as hit (for panels B and D) or false alarm (for panels C and E).
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separately (SPGR: �0.03, �0.05, �0.07; and MPRAGE: �0.18,

�0.2, �0.22; BETA, BETB, BETC, respectively). BSE (Sandor

and Leahy, 1997; Shattuck et al., 2001) was applied with a value

of 0.67 for the edge scale. The parameters for the McStrip meta-

algorithm (Rehm et al., 2004) were optimized using the gold

standard average of all 20 scans. The WS algorithm (Segonne

et al., 2004) was applied to the SPGRs using a preflooding

height of 41, and for the MPRAGEs the preflooding height was

set to 15.

Interactions with skull stripping

It is likely that there are interactions between processing steps,

e.g., the impact of a segmentation algorithm is affected by the

choice of a skull-stripping algorithm. Therefore, a parallel set of

analyses was performed to remove the scan-to-scan variability

introduced by the skull-stripping algorithms. For these parallel

analyses, each skull-stripping algorithm was run on the gold

standard brain only, and then the resulting brain/background mask

was applied to each individual scan. Thus, the d-primes from

these parallel analyses do not reflect different amounts of non-

brain tissue in the final images. It is possible that there are

interactions between other steps in the processing stream (e.g.,

noise reduction interactions with segmentation algorithms), but

there are no comparable methods for removing these effects.

Therefore, in this paper, an analysis titled ‘‘skull strip individual

scans’’ refers to analyses where each individual scan was skull

stripped. Alternatively, ‘‘skull strip gold standard only’’ refers to

analyses where only the gold standard brain was skull stripped

and the brain/background mask was applied to each individual

scan. Most of the interpretation of results, including the

applications to volumetric studies, were done with the ‘‘skull

strip gold standard only’’ data set.
Tissue segmentation

The final step of the tissue segmentation process is the

implementation of the segmentation algorithm itself. In the absence

of noise and partial volume effects, segmentation would be trivial,

and a simple thresholding method could be used to identify CSF

(lowest signal intensity), WM (highest signal intensity), and GM

(intermediate). Because noise and partial volume effects are not

trivial, simple thresholding strategies are not applicable. The four

segmentation algorithms examined here each use different strat-

egies to overcome the difficulties of partial voluming effects.

Expectation maximization segmentation (EMS; Van Leemput

et al., 2003) is based on a hidden Markov random field model

and an expectation–maximization algorithm, which is initialized

with a priori probability images of GM, WM, and CSF that have

been provided by the Montreal Neurological Institute (Evans et al.,

1993). FMRIB’s automatic segmentation tool (FAST; Zhang et al.,

2001) is also based on a hidden Markov random field model and an

expectation–maximization algorithm but does not use the a priori

probability images. The segmentation algorithm used in the

statistical parametric mapping package (SPM; Ashburner and

Friston, 1997) uses a maximum likelihood ‘‘mixture model’’

algorithm that is initialized with a priori probability images of

GM, WM, and CSF that have been provided by the Montreal

Neurological Institute (Evans et al., 1993). The fourth algorithm,

partial volume classifier (PVC; Shattuck et al., 2001), starts with a

model that is based on the theoretical intensity values for both pure

and mixed-tissue types as an initialization for a maximum a

posteriori (MAP) classifier.

Two of the algorithms, EMS (Van Leemput et al., 2003) and

SPM (Ashburner and Friston, 1997), were evaluated using the

default parameters. Because the outputs of both of these algorithms

are probabilistic values (e.g., 75% chance that a voxel is CSF),



Fig. 7. Comparison of pulse sequence. Hit rate versus False Alarm Rate.

Each point represents the agreement of one individual volume (processed

with one unique processing sequence) with the identically processed gold

standard, expressed as an ordered pair: (false alarm rate, hit rate). The ideal

agreement between an individual volume and the gold standard volume

would be in the top left-hand corner of the graph (0, 1), which represents

0% false alarms and 100% hits. All possible combinations of data

processing protocols are represented. The red points indicate volumes that

were acquired with the SPGR pulse sequence; black points represent

volumes acquired with the MPRAGE pulse sequence. (A) GM; (B) WM;

(C) CSF.
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three thresholds were applied to the output probabilities (50%,

75%, and 90%); therefore, an SPM50 CSF map is a map that

contains all voxels that were labeled CSF with >50% probability.

Since both EMS and SPM involve an initial step of aligning to the

MNI brain, this alignment was done once with the gold standard

brain. Then the a priori maps were resliced into the space of the

current data set; this was done so that all of the computations of

tissue type counts were done in the same space for all algorithms

and to avoid interpolation of the images. The third algorithm,

FAST (Zhang et al., 2001), was applied using three different

parameters for the number of iterations (10, 20, and 30; FAST10,

FAST20, and FAST30, respectively). The fourth algorithm, PVC

(Shattuck et al., 2001), was applied using the default parameters.

While the current study focused on ‘‘hard’’ segmentation (each

voxel is assigned only one tissue type label), future studies can be

done to compare ‘‘hard’’ segmentation algorithms to ‘‘soft’’

(probabilistic labels) segmentation algorithms; a topic that is

currently being investigated by Schaper et al. (2005).

At the beginning of the study, parameters were chosen for

evaluation based on visual, subjective evaluation of performance

on the gold standard image and one image from each pulse

sequence. Multiple parameter sets were evaluated for an algorithm

if the choice of the parameter was observed to have an effect on the

output and if it was not visually obvious which parameter set was

ideal. All of these algorithms (and parameters) were applied to

every volume from both variations of the skull-stripping strategy.

For the analysis of skull strip individual scans (each volume was

skull stripped individually), there were a total of 170 pathways;

each of the twenty original volumes (10 MPRAGEs and 10

SPGRs) were processed with all possible pathways. This led to a

total of 3400 fully segmented images, of which 127 were rejected

due to poor results. In the skull strip gold standard only (only the

gold standard volume was skull stripped, and the results applied to

the individual volumes) analysis, there were 190 pathways. This

led to 3800 fully segmented images, of which 2 were rejected due

to poor results. Poor results were identified by visual inspection.

Assessment

Each individually processed segmentation map was compared

to the identically processed gold standard brain, and a d-prime was

computed (Fig. 3). For example, in order to compute an individual

GM d-prime, the GM mask of an individual scan is compared to

the GM mask of the identically processed gold standard image. A

voxel is considered a ‘‘hit’’ if the individual scan is labeled GM and

the same voxel of the gold standard image is labeled GM.

Similarly, a voxel is labeled a ‘‘miss’’ if the individual scan is not

labeled GM, but the same voxel of the gold standard image is

labeled GM. A voxel is labeled ‘‘false alarm’’ if the individual scan

is labeled GM, but the gold standard is not; while a label of

‘‘correct rejection’’ is applied if neither the individual volume nor

the gold standard label the voxel as GM. Thus, every voxel in the

volume is labeled with one of these four terms. The hit rate is

defined as the number of hits divided by the total number of voxels

labeled GM in the gold standard image; similarly, the false alarm

rate is the number of false alarms divided by the total voxels in the

gold standard image that were not labeled as GM. Then a d-prime

is computed for each segmented image by computing the differ-

ence between the z scores of the hit rate. For example, a hit rate of

50% and a false alarm rate of 50% is chance performance and the

associated d-prime is 0; a hit rate of 80% and a false alarm rate of
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5% corresponds to a d-prime of 2.5. The d-prime reflects the

distance between the signal and noise means (Stanislaw and

Todorov, 1999). Therefore, in the current context, if one pathway

has a higher d-prime then that pathway is more robust to noise; in

other words, the segmentation of an individual volume is more

likely to correspond to the segmentation of the gold standard image

(high SNR).

Many studies of reliability calculate an intraclass correlation

coefficient, which is an appropriate measure of reliability if

multiple individuals are being compared without a gold standard.
Fig. 8. Relative impact of data acquisition and data analysis. Graphs like those show

average false alarm rate for each variable (e.g., the graph in Fig. 7A is reduced to t

choices evaluated. Green symbols are for noise reduction algorithms. Gold sym

algorithms. (A) GM; (B) WM; (C) CSF. These graphs indicate that the choice of se

points are the most scattered). Pulse sequence is the second most important, wh

important (the points are clustered together).
For the current data set, the d-prime is more appropriate because

the variability of the segmentation is measured as a deviation from

the gold standard, rather than just agreement across individual

segmentation maps. The d-prime is also a comprehensive metric of

agreement because it is based on both the hit rate and the false

alarm rate. Metrics that are solely based on percent overlap only

show the hit rate while neglecting the false alarm rate. In an

extreme case, an algorithm could label every voxel of one image as

GM and show 100% hit rate, but this would not be an example of

an optimal algorithm because the false alarm rate would also be
n in Fig. 7 were reduced to one point that represents the average hit rate and

he red square and red triangle in A). Red symbols are for the pulse sequence

bols are for skull-stripping algorithms. Blue symbols are for segmentation

gmentation algorithm has the most impact on segmentation reliability (blue

ile noise reduction algorithms and skull-stripping algorithms are the least



Fig. 8 (continued).
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100%. The least informative metrics occasionally used in

validation studies are those that only compute the volume

correlations of a region, e.g., comparing the amount of GM in an

individual volume to the amount of GM in the gold standard

volume. This type of metric is misleading because volumes of

regions can show a high degree of correlation while the spatial

location of the regions can be very different. In an extreme case,

two regions can be completely non-overlapping and still show an

identical volume. Therefore, for many types of validation studies

that compare individual data to that of a gold standard, a d-prime

analysis is an appropriate metric to use.
Fig. 9. Application to volumetric studies. The following bilateral regions were d

details): frontal lobe, parietal lobe, cerebellum, occipital lobe, and temporal lobe. W

volumes that were processed with the 10 ‘‘best’’ and 10 ‘‘worst’’ data analysis pathw

were defined as a volume error of 25% or more; this led to the removal of 10 out

deviation of volumes estimated/mean volume) can be improved by an order of mag

poorly optimized pathway (low d-prime). Error bars show standard error.
Application to volumetric studies

The segmentation of an image into GM, WM, and CSF is a

preprocessing step that is used in many volumetric analyses. It is

currently unknown how variability in the segmentation process can

affect volumetric analyses; therefore, a selected set of simple

volumetrics were computed on the current data set.

A 3rd order non-linear warping algorithm (Woods et al.,

1998b) was used to spatially align the single-subject Montreal

Neurological Institute (MNI) brain (Evans et al., 1993; Collins et

al., 1998) to the gold standard brain of the current study. The
elineated on the volumes using an automated procedure (see Methods for

ithin each pulse sequence, the GM volume of each region was calculated for

ays (i.e., the 10 highest and 10 lowest GM d-primes, respectively). Outliers

of 380 pathways. This graph shows that GM volume estimations (standard

nitude by using an optimized analysis pathway (high d-prime) compared to a



Fig. 10. Relationship between gray matter d-primes and gray matter volume measurement errors. For each region, the logarithm of the GM d-primes was

plotted against the logarithm of the measurement error (standard deviation/mean volume) of the GM volume estimations. SPGR and MPRAGE points are

displayed in separate colors, but the linear regressions were computed on the data as a whole. (A) Frontal lobe: ln (SD/mean volume) = �5.4 * ln (GM d-

prime) + 2.2 (r2 = 0.24, F = 116, P < 0.001). Parietal lobe: ln (SD/mean volume) = �6.0 * ln (GM d-prime) + 3.4 (r2 = 0.32, F = 173, P < 0.001). Cerebellum:

ln (SD/mean volume) = �6.8 * ln (GM d-prime) + 4.4 (r2 = 0.14, F = 61, P < 0.001). Occipital lobe: ln (SD/mean volume) = �3.4 * ln (GM d-prime) + 0.4

(r2 = 0.12, F = 50, P < 0.001). Temporal lobe: ln (SD/mean volume) = �3.8 * ln (GM d-prime) �0.29 (r2 = 0.13, F = 54, P < 0.001). These plots indicate that

there is a clear relationship between the GM d-prime and the measurement error in volumetrics. A larger GM d-prime indicates a smaller degree of variability in

the estimation of GM volume. Therefore, by optimizing the segmentation pathway (maximizing the GM d-prime), the power and sensitivity of volumetric

analyses can be maximized because the within subject variability of volume estimation can be minimized.
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resulting transformation was then applied to the following

regions of an atlas that were drawn manually on the MNI

single-subject brain: cerebellum, frontal lobe, temporal lobe,
parietal lobe, and occipital lobe (Tzourio-Mazoyer et al., 2002).

This resulted in the delineation of the lobes on the gold standard

brain; these delineations could then be transferred to the



Table 2

Maximum d-primes

Pulse sequence Noise red. Skull strip Segment

Skull strip individual scans

GM (3.8614) MPRAGE MNIN3 BSE SPM50

WM (4.6517) SPGR BFC BSE FAST10

CSF (4.2378) MPRAGE MNIN3 BSE PVC

Skull strip gold standard only

GM (3.8614) MPRAGE MNIN3 BSE SPM50

K.A. Clark et al. / NeuroImage 29 (2006) 185–202 195
individual scans because all of the images were previously

spatially aligned. While this process may not be as accurate as a

manual delineation of the lobes, this is irrelevant for the current

analysis because all of the scans are of the same subject and are

spatially aligned. The GM volumes of each region were

computed for all individual scans and the gold standard brain

for every data acquisition/analysis pathway. The measurement

errors of the GM volumes were computed for each pathway in

order to characterize the relationship between the measurement

error and the GM d-prime.

WM (4.7057) MPRAGE BFC WS FAST10

CSF (4.3806) MPRAGE MNIN3 McStrip FAST30

The data acquisition and analysis choices that were associated with the

maximum d-primes for each tissue type are summarized.

Results

Within each data set (both skull-stripping variations) and

each tissue type (GM, WM, and CSF), descriptive statistics

were computed, and the data were tested for normality using a

one-sample Kolmogorov–Smirnov (KS) test. For a normal

distribution, the mean and median are the same, the kurtosis

has a value of 3, and the skewness a value of 0. The

descriptive statistics and KS test results are summarized in

Table 1. The results that follow are all reported using parametric

statistics.

Optimal data acquisition and analysis

For every combination of pulse sequence, noise reduction,

skull stripping, and segmentation protocol (e.g., MPRAGE-

MNIN3-WS-EMS90), the average d-prime for each tissue type

(GM, WM, and CSF) was computed (Table 2). Then the pathway

associated with the maximum d-prime for each tissue type was

identified (Figs. 4–6). The maximum d-primes indicate the

optimal way to collect and analyze segmentation data, based on

reproducibility. It should be noted that these results are

necessarily limited to this particular scanner and these particular

algorithms and parameter sets. It is probable that on a different

scanner there would be a different optimal pulse sequence. It is

also possible that a different algorithm or parameter choice of any

of these processing algorithms could yield a more reliable

segmentation of the current data set. Therefore, the results

regarding the maximum d-primes are provided only as an

illustration of how this method can be used to choose an optimal

data acquisition and processing strategy.

The segmentation results of the data processing pathways that

were associated with the maximum d-primes of each tissue type

are shown in Figs. 4–6 (GM, WM, CSF, respectively). Each

figure shows the segmentation of the gold standard volume (panel
Table 1

Descriptive statistics of the d-primes

Mean Median Skew Kurtosis KS test (D, p)

Skull strip individual scans

GM 3.3750 3.3861 �0.0458 2.5535 (0.6, 0.22)

WM 3.9362 3.9262 0.1529 2.2787 (0.6, 0.23)

CSF 3.8146 3.8180 �0.2579 2.4843 (0.06, 0.19)

Skull strip gold standard only

GM 3.3706 3.3802 �0.0431 2.4766 (0.06, 0.18)

WM 3.9674 3.9408 0.1420 2.1757 (0.06, 0.10)

CSF 3.9301 3.9308 �0.0833 2.1937 (0.07, 0.08)

The descriptive statistics and KS-test for normality results are summarized.
A), as well as the total number of hits and false alarms for the

MPRAGE sequence (panels B and C) and the SPGR sequence

(panels D and E). These figures are only shown for the analysis in

which the gold standard volume was skull stripped and the result

applied to individual volumes. While minimizing the variability of

tissue segmentation across scans is important, it is also important

to conduct studies that maximize the accuracy of tissue

segmentation. The reason for this can easily be seen in Figs.

5C and E, the results of the pathway associated with the highest

WM d-prime. The basal ganglia and thalamus of the gold standard

image is labeled as GM, whereas all of the individual images

labeled this area as WM (as evidenced by the high false alarm

rate). Therefore, while optimizing data acquisition and analysis

protocols, special attention should be paid to the accuracy of the

results as well.

Notably, the GM d-primes are the lowest, indicating that the

classification of gray matter is the most variable classification and

is the least robust to noise. Also, the optimal strategy for GM is not

the same as WM, which is not the same for CSF; therefore, the

optimal strategy for segmentation will most likely vary depending

upon the intended final use of the segmentation data. In order to

further investigate this phenomenon, a post hoc analysis was

conducted on the GM classifications of the deep brain structures

(excluding the cortex). The maximum d-prime for GM of the deep

brain structures was 4.5293 and was associated with the following

pathway: MPRAGE-SUSAN2d-BETC-PVC, which is different

from the pathway identified as optimal for global GM estimation.

The MPRAGE still led to less variable GM classification than the

SPGR (4.2184 > 4.1081, P < 0.001, Wilcoxon signed rank test).

The GM classifications of deep brain structures showed that false

alarm rates that were lower than any other tissue type (median =

0.02%) and highly variable hit rates (median = 74.68%, range:

54.44–92.98%). This indicates that the effect of noise on the

classification of deep brain structures is that these structures tend to

be misclassified as WM rather than the misclassification of nearby

WM as GM. This example serves to highlight the importance of

considering the final use of segmented data when implementing

optimization procedures.

Failures

A few of the combinations of noise reduction algorithms

and skull-stripping algorithms blatantly failed on these images

(either large amounts of skull were kept or large amounts of

cortex were removed). The following pairs were considered

failures in the skull strip individual scans data set and were not



Table 4

Effects of noise reduction

GM

(mean d-primes)

WM

(mean d-primes)

CSF

(mean d-primes)

Skull strip individual scans

MNIN3 3.3704 3.9692 3.8436

BFC 3.2328 3.7628 3.7631

SUSAN2d 3.4192 3.9896 3.7891

SUSAN3d 3.4444 3.9631 3.8353

Skull strip gold standard only

MNIN3 3.3845 3.9870 3.9750

BFC 3.2435 3.8974 3.8590

SUSAN2d 3.4256 4.0037 3.9138

SUSAN3d 3.4538 3.9889 3.9680

The mean d-primes for GM, WM, and CSF are summarized for all of the

noise reduction algorithms: MNIN3, BFC, SUSAN2, and SUSAN3.
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included in the results: SUSAN2d-BSE, SUSAN3d-BSE, BFC-

BSE, BFC-WS, SUSAN2d-McStrip, SUSAN3d-McStrip, and

BFC-McStrip. For the skull strip gold standard only data set,

there were fewer combinations of noise reduction algorithms

and skull-stripping algorithms that failed because more of the

combinations were successful on the gold standard volume than

when applied to each individual brain. Therefore, the only

pairs that were removed from this analysis were SUSAN2d-

BSE, SUSAN3d-BSE, BFC-BSE, SUSAN2d-McStrip, and

SUSAN3d-McStrip.

Impact of pulse sequence

Within each tissue type, paired t tests were computed between

the mean d-primes of the MPRAGE volumes and the mean d-

primes of the SPGR volumes, collapsing across data processing

streams (Table 3). Paired t tests were used because each processing

pathway (e.g., BFC-McStrip-PVC) was applied equally to both

acquisition protocols. The t tests were computed separately for

both variations of the skull-stripping application: (1) skull strip

individual scans (top half of Table), and (2) skull strip gold

standard only (bottom of table). In all 3 tissue types and both

variations of the skull-stripping applications, the MPRAGE led to

significantly higher d-primes than the SPGR (each test, P < 0.001,

df = 169 for skull strip individual scans, df = 189 for skull strip

gold standard only, paired). This indicates that, for this scanner, the

MPRAGE sequence is more robust to noise than the SPGR; thus,

the MPRAGE yields more reliable segmentation results.

The graphs in Fig. 7 contain one point from every segmentation

map that was generated through all of the possible combinations of

data acquisition and analysis procedures. Each point is represented

as an ordered pair of (false alarm rate, hit rate). The d-prime is

computed by subtracting the z score of the false alarm rate from the

z score of the hit rate; therefore, the d-prime is a summary of the

information shown in Fig. 7. These graphs clearly demonstrate that

the MPRAGE performs better than the SPGR because the black

points (MPRAGE) are overall closer to the ideal of 0% false alarms

and 100% hits, which is the point (0,1) in the top left-hand corner

of the graph. All 3 tissue types are shown: GM (Fig. 7A), WM

(Fig. 7B), and CSF (Fig. 7C). These figures are only shown for the

analysis in which the gold standard volume was skull stripped and

the result applied to individual volumes.
Table 3

Effects of data acquisition

GM

(mean d-primes)

WM

(mean d-primes)

CSF

(mean d-primes)

Skull strip individual scans

MPRAGE 3.5072 4.0120 3.9630

SPGR 3.2429 3.8603 3.6662

t = 51.30,

P < 0.001

t = 16.03,

P < 0.001

t = 56.21,

P < 0.001

Skull strip gold standard only

MPRAGE 3.4962 4.0456 4.0736

SPGR 3.2451 3.8891 3.7866

t = 48.52,

P < 0.001

t = 17.50,

P < 0.001

t = 78.66,

P < 0.001

The mean d-primes for GM, WM, and CSF are summarized for both the

MPRAGE and SPGR pulse sequences. For all 3 tissue types, the MPRAGE

yields a significantly less variable segmentation.
Impact of noise reduction

Paired t tests were computed between each pair of noise

reduction algorithm, separately for each tissue type. The t tests

were all corrected for multiple comparisons with a Bonferroni

correction, by dividing the alpha by the number of tests, which was

6. Multiple t tests were conducted rather than an ANOVA because

there were missing data values due to the noise reduction skull-

stripping algorithm failures. The mean d-primes for each tissue

type and each algorithm are shown in Table 4. The t tests were

computed separately for both variations of the skull-stripping

application: (1) skull strip individual scans (top half of Table), and

(2) skull strip gold standard only (bottom of table).

For the skull strip individual scans data, all of the GM d-primes

were significantly different from each other (P < 0.001, corrected).

In the WM and CSF d-primes, all of the differences were

significant (P < 0.001, corrected) except for MNIN3 versus

SUSAN3d (ns). For the skull strip gold standard only data, all of

the GM d-primes were significantly different from each other (P <

0.001, corrected). In the WM d-primes, most differences were

significant (P < 0.003, corrected); SUSAN3d did not differ from

MNIN3 (ns) and was only marginally different from SUSAN2d

(P < 0.02, corrected). All of the CSF d-primes were significantly

different from each other (P < 0.001, corrected), except the

MNIN3 did not significantly differ from either SUSAN algorithm

(ns). In most cases, the SUSAN algorithm performed better than

the others; however, the mean differences in the d-primes across

noise reduction algorithms were rather small. It should also be

noted that the MNIN3 algorithm was the only one that did not have

any failures with the skull-stripping algorithms.

It should be noted that in the current data analysis tree (Fig.

1B), BFC and BSE are not applied in the order recommended by

the authors of the methods. BFC in particular is based on a model

that assumes the data have already been skull stripped; therefore,

the failures with BFC are not unexpected. Nonetheless, BFC was

part of the optimal pathway for WM segmentation. Attempts to

systematically reverse the order of the analysis for companion

purposes were largely unsuccessful. The only skull-stripping

algorithm that correctly skull stripped the raw data was BET, so

a fully automated processing stream based on BFC of skull

stripped data was limited to the sequence BET-BFC. Of course it is

possible that the other skull-stripping algorithms would perform

more robustly in other data sets. Average d-primes were computed
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for each of the noise reduction algorithms when applied after

BETA, BETB, and BETC. In all three tissue types, the d-primes

associated with MNIN3 went down, while the d-primes for BFC

went up. In the GM and the CSF, the values for SUSAN2d and

SUSAN3d went up, while in the WM they went down. In all three

tissues types the order of d-primes from largest to smallest was

SUSAN3d > SUSAN2d > BFC > MNIN3. Future studies can be

done to further investigate the effect of the order of the analysis

pathway.

Impact of skull stripping

Matched paired t tests were also conducted between the mean

d-primes of each pair of skull-stripping algorithms, within each

tissue type (Table 5). The t tests were corrected for multiple

comparisons with a Bonferroni correction by dividing the alpha by

15 (number of t tests). The d-primes associated with the skull strip

individual scans data reflect two types of variability: that due to

differences between algorithms or parameter choices of a given

algorithm, and that due to scan-to-scan variability in the

implementation of any skull-stripping algorithm. The d-primes

associated with the skull strip gold standard only data only reflect

the variability due to algorithms and parameters because only the

gold standard brain was actually skull stripped with an algorithm;

all of the individual scans were skull stripped by applying the mask

from the gold standard brain.

For the skull strip individual scans data, all of the pairs were

significantly different (P < 0.003, corrected), except BETA-

McStrip (P < 0.04, corrected) and BETA-WS, BETC-WS (ns).

In the WM, all of the pairs were significant. In the CSF, all of the

pairs were significant (P < 0.001, corrected) except BSE was only

marginally different from BETB (P < 0.02, corrected) and BETA

(P < 0.007, corrected). For the skull strip gold standard only data,

all of the differences in the GM d-primes were significant (P <

0.001, corrected), except none of the BET algorithms differed from

each other (ns). In the WM, most of the differences were

significant (P < 0.005, corrected), except the difference between

BETA and BETB was only marginally significant (P < 0.04,

corrected) and there was no significant difference between McStrip
Table 5

Effects of skull stripping

GM

(mean d-primes)

WM

(mean d-primes)

CSF

(mean d-primes)

Skull strip individual scans

BETA 3.3637 3.8935 3.8778

BETB 3.3722 3.9170 3.8896

BETC 3.3528 3.8705 3.8581

BSE 3.5006 4.0671 4.0379

McStrip 3.3794 4.0167 3.7082

WS 3.3801 4.0356 3.5335

Skull strip gold standard only

BETA 3.3518 3.9375 3.9027

BETB 3.3545 3.9500 3.9052

BETC 3.3462 3.9165 3.9023

BSE 3.4999 4.0649 4.0376

McStrip 3.3962 3.9961 3.9614

WS 3.3850 4.0266 3.9677

The mean d-primes for GM, WM, and CSF are summarized for all of the

skull-stripping algorithms: BETA, BETB, BETC, BSE, McStrip, and WS.
and WS (ns). In the CSF, McStrip and WS differed significantly

from the BET algorithms (P < 0.001, corrected) and BSE was

marginally different from the BET algorithms (P < 0.03,

corrected). BSE was associated with the highest d-prime for all

three tissues types; however, it only worked in images that were

first corrected with MNIN3.

Many of the t tests of the skull-stripping algorithms were not

significant, and the differences in d-primes across algorithms were

rather small. This indicates that the choice of a skull-stripping

algorithm has a relatively minor impact on segmentation varia-

bility. Furthermore, many of the differences across algorithms were

reduced by removing the scan-to-scan variability of the skull-

stripping algorithm (as was the case for the skull strip gold

standard only data). This means that of the variability in tissue

segmentation that can be attributed to skull-stripping algorithms,

most of it is due to the scan-to-scan variability of the skull-

stripping algorithms themselves rather than variability across

algorithms. Therefore, in terms of segmentation variability, there

is more to be gained by reducing the scan-to-scan variability of any

given algorithm rather than by choosing an optimal algorithm. It

should be noted that this study did not address the issue of

accuracy of skull-stripping algorithm. While the evidence of the

current study suggests that the choice of a skull-stripping algorithm

has little impact on tissue segmentation variability, it is likely that

the accuracy and/or reliability of skull stripping can affect other

processing steps, e.g., cross-registration.

Impact of segmentation algorithm

The mean d-primes associated with each segmentation algo-

rithm for each tissue type are summarized in Table 6. Within the

skull strip individual scans data set, an ANOVAwas computed for

each tissue type: GM (F(9,297) = 79, P < 0.001); WM

(F(9,297) = 202, P < 0.001); CSF (F(9,297) = 9; P < 0.001).

Within the skull strip gold standards only data set, an ANOVAwas

computed for each tissue type: GM (F(9,333) = 122, P < 0.001);

WM (F(9,333) = 280, P < 0.001); CSF (F(9,333) = 76, P < 0.001).

ANOVA analyses were conducted because there were no missing

data values, and post hoc pairwise comparisons are not reported

because the number of t tests would be 45 for each skull-stripping

variation. The differences among the mean d-primes were larger

than any other factor; therefore, the choice of a segmentation

algorithm has the largest impact on the variability of tissue

segmentation. These effects are largest in the WM, as indicated by

the large range of d-prime values in the WM compared to the other

tissue types.

Relative impact of acquisition and analysis protocols

The process of optimizing every step of data acquisition and

analysis protocols can be time consuming and labor intensive;

therefore, it is more beneficial to optimize protocols that have a

large effect on the final variability rather than a minimal effect. The

graphs in Fig. 8 show the relative impact of each acquisition/

analysis protocol on the final segmentation variability for each

tissue type, as computed on the skull strip gold standard only data

set. These graphs were generated by computing an average hit rate

and false alarm rate for each pulse sequence and algorithm. For

example, in Fig. 8A (GM), the MPRAGE pulse sequence has a

point at (0.005, 0.816) and the SPGR pulse sequence has a point at

(0.007, 0.769), indicating that when the data were averaged across



Table 6

Effects of segmentation

GM

(mean d-primes)

WM

(mean d-primes)

CSF

(mean d-primes)

Skull strip individual scans

EMS50 3.5286 3.9537 3.7168

EMS75 3.4174 3.7495 3.7720

EMS90 3.3119 3.5594 3.8897

FAST10 3.3409 4.2348 3.8339

FAST20 3.2829 4.2516 3.8389

FAST30 3.2531 4.2430 3.8376

SPM50 3.5823 4.0062 3.8244

SPM75 3.4406 3.8925 3.8153

SPM90 3.2676 3.7784 3.7931

PVC 3.3248 3.6926 3.8245

Skull strip gold standard only

EMS50 3.5348 3.9430 3.7644

EMS75 3.4143 3.7345 3.8052

EMS90 3.2993 3.5482 3.9032

FAST10 3.3277 4.3166 4.0000

FAST20 3.2657 4.3374 4.0005

FAST30 3.2391 4.3286 3.9969

SPM50 3.5832 4.0387 3.9704

SPM75 3.4362 3.9145 3.9522

SPM90 3.2570 3.7926 3.9216

PVC 3.3491 3.7195 3.9865

The mean d-primes for GM, WM, and CSF are summarized for all of the

segmentation algorithms: EMS50, EMS75, EMS90, FAST10, FAST20,

FAST30, PVC, SPM50, SPM75 and SPM90.
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all data processing choices, the MPRAGE yielded an average false

alarm rate of 0.5% and a hit rate of 81.6%, while the SPGR yielded

an average false alarm rate of 0.7% and a hit rate of 76.9%.

Therefore, by selecting the MPRAGE pulse sequence of this

scanner instead of the SPGR sequence, the false alarm rate is

decreased while the hit rate is increased. These graphs indicate that

the choice of segmentation algorithm has the most impact on

segmentation reliability (blue points are the most scattered); the

choice of pulse sequence has the second greatest impact. The

choices of noise reduction and skull-stripping algorithms have the

lowest effect, as evidenced by the fact that the points are clustered.

Also, it is clear from these graphs that the classification of WM is

the most sensitive to acquisition and analysis protocols, while the

CSF is the least sensitive. Therefore, studies that rely heavily on

the reliable segmentation of WM have the most to gain from

optimization.

Application to volumetric studies

The previous results indicated that different data acquisition and

analysis choices can impact the variability in tissue segmentation;

however, these results do not indicate how variability in tissue

segmentation can impact volumetric measurements. Therefore, the

relationship between the GM d-prime and GM volumetrics was

explored. For every fully segmented image within each acquisition/

processing pathway (e.g., MPRAGE-MNIN3-BETC-EMS75 path-

way consisted of 10 images), GM volumes for each of the

following regions were calculated: frontal lobe, parietal lobe,

cerebellum, occipital lobe, and temporal lobe. The ratio of the

standard deviation to the mean GM volume was computed for each

pathway and each region. This analysis was only conducted on the
skull strip gold standard only data set. Outliers were defined as

those pathways that showed a ratio greater than 25%; this resulted

in the removal of 10 out of 380 pathways. From the remaining

pathways, the 10 ‘‘best’’ (highest GM d-prime) and 10 ‘‘worst’’

(lowest GM d-prime) analysis pathways were chosen for each

pulse sequence. For the MPRAGEs, 9 out of 10 of the best

pathways used the SPM50 segmentation (the 10th used SPM75),

while the worst 10 pathways used a mix of the FAST algorithms

and EMS50. For the SPGRs, 7 out of 10 of the best pathways used

the EMS50 segmentation (the other 3 used SPM50), while the

worst 10 pathways used a mix of the FAST algorithms and EMS50.

For both pulse sequences, 8 out of 10 of the best analysis pathways

used a parameter set of the SUSAN algorithm (e.g., SUSAN2d or

SUSAN3d) for the noise reduction. Most of the worst pathways

used BFC for a noise reduction algorithm, consistent with the

developer’s recommendation that BFC should not be used with

data not previously skull stripped.

In 4 out of 5 of the regions and both pulse sequences, the best

10 analysis pathways yielded a more reliable estimate of GM

volume than the worst 10 analysis pathways, as evidenced by a

lower ratio of standard deviation to mean volume (P < 0.03; Fig.

9); the difference in the occipital lobe was not significant. When

the data were averaged across pulse sequences and analysis

pathways, the mean volume estimation error (ratio of standard

deviation to mean volume) for the best pathways was 0.94%, while

the mean for the worst pathways was 2.70%. This means that on

average, optimal pathways yield measurements that are three times

less variable than suboptimal pathways. The mean volume

estimation error across all regions was 0.72% for the 10 best

MPRAGE pathways and 1.16% for the 10 best SPGR pathways. In

the occipital lobe, optimization made the least difference; the best

pathways yielded an estimation error of 1.67% and the worst

pathways 2.30%. In the cerebellum, optimization made the most

difference; the best pathways yielded an estimation error of 0.73%

and the worst pathways 4.21%. This means that the potential

benefit of using an analysis pathway that has a high GM d-prime

versus a low GM d-prime is on average three-fold and can be as

much as six-fold.

The relationship between GM d-primes and GM volume

estimations was examined, and the results are shown in Fig. 10. In

the figure, the logarithm of the GM d-primes are plotted on the x-

axis, while the logarithm of the ratio of the standard deviation to the

mean volume estimates are plotted on the y-axis. Each point

represents an analysis pathway; red points represent the SPGR pulse

sequence and black points the MPRAGE sequence. The linear

regressions were computed on the data as a whole (not distinguish-

ing between MPRAGE and SPGR) and are summarized here.

Frontal lobe: ln (SD/mean volume) = �5.4 * ln (GM d-prime) +2.2

(r2 = 0.24, F = 116, P < 0.001). Parietal lobe: ln (SD/mean volume)

= �6.0 * ln (GM d-prime) + 3.4 (r2 = 0.32, F = 173, P < 0.001).

Cerebellum: ln (SD/mean volume) = �6.8 * ln (GM d-prime) + 4.4

(r2 = 0.14, F = 61, P < 0.001). Occipital lobe: ln (SD/mean volume)

= �3.4 * ln (GM d-prime) + 0.4 (r2 = 0.12, F = 50, P < 0.001).

Temporal lobe: ln (SD/mean volume) = �3.8 * ln (GM d-prime)

�0.29 (r2 = 0.13, F = 54, P < 0.001). These regressions indicate that

there is a clear association between GM d-primes and volume

estimates of GM in the major lobes of the brain. Specifically, as the

GM d-prime increases, the variability in volume estimation

decreases. Therefore, by optimizing the segmentation process,

through the selection of a maximum d-prime, the variability in

volume estimation will be minimized.
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Discussion

Clinical and basic neuroanatomical structural neuroimaging

studies usually quantify one or more metrics of brain structure,

including total brain volume, lateral ventricle shape, frontal lobe

gray matter volume, caudate volume, and many others. Most of

these metrics depend upon the accurate and reliable tissue

segmentation of a structural scan, i.e., the labeling of gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF). Recent

reviews in several disorders have shown convergent evidence of

structural abnormalities (Lingford-Hughes et al., 2003; Haldane

and Frangou, 2004); however, studies in other disorders show

more inconsistent results (Sheline et al., 2002; Palmen and van

Engeland, 2004). While many inconsistencies may be due to

inhomogeneities in clinical populations and high inter-subject

anatomical variability, it is also probable that data acquisition and

analysis methods introduce variability into the estimation of the

metrics. The role of data acquisition/analysis optimization is to

increase the power of any given study by reducing the variability

and/or increasing the accuracy of the measurements. The current

study examined a method for optimizing data acquisition and

analysis protocols with the objective of reducing the variability

of tissue segmentation that is introduced through measurement

error. By minimizing variability due to measurement error, true

inter-subject anatomical variability can be studied more effec-

tively. However, it is not enough to simply reduce the variability

in the measurements; future studies that examine methods for

optimizing the accuracy of tissue segmentation will also be

important. Even though many structural studies depend on tissue

segmentation, there are also several other procedures that lead to

the final structural metric (e.g., registration, manual delineation).

Future studies that reduce the variability and increase the

accuracy of these procedures will also lead to more consistent

results.

In optimization studies, two main points are usually considered:

the implementation of the optimization strategy and its overall

impact. In structural neuroimaging, the implementation of opti-

mization strategies can be difficult because of the lack of a true

gold standard. Some optimization strategies may be time consum-

ing and/or labor intensive, and few studies have examined how

different acquisition and analysis choices can impact the accuracy

and/or reliability of tissue segmentation and volumetrics. In a

recent study, Li and Mirowitz (2004) used a composite phantom as

a gold standard in order to evaluate the effects of data acquisition

choices (pulse sequence and parameters) on the overall quality of

the image. They found that the excitation flip angle (FL), echo time

(TE), and repetition time (TR) play critical roles in determining the

quality of the image, as can be seen by intensity inhomogeneities

and ghosting artifacts (Li and Mirowitz, 2004). It is not clear,

however, how these differences in image quality translate into

differences in the accuracy and/or reliability of downstream

processes; therefore, the impact of optimizing these pulse sequence

parameters has not been established. Arnold et al. (2001) evaluated

the performance of six different noise reduction algorithms on both

real and simulated data. They were primarily interested in the

accuracy of the algorithms and found that the two locally adaptive

methods that they studied (MNIN3 and BFC) were superior to the

four non-adaptive methods (Arnold et al., 2001). From this study it

is not clear how much the choice of an inhomogeneity algorithm

can impact the calculation of structural metrics. In the current

study, it was found that the choice of a noise reduction algorithm
has very little effect on tissue segmentation variability; however,

the application of some noise reduction algorithms prior to skull

stripping can cause the skull-stripping algorithms to fail.

Lee et al. (2003) used data that are publicly available from two

repositories (http://www.bic.mni.mcgill.ca/brainweb/ and http://

www.cma.mgh.harvard.edu/ibsr/) to compare the accuracy of

automated and semi-automated skull-stripping methods. They

found that while the semi-automated methods were more accurate,

they were also more time consuming and oftentimes more variable

(Lee et al., 2003). It is unclear how these differences in variability

and accuracy affect tissue segmentation, cross-registration, and/or

volumetric calculations; therefore, the question of whether or not it

is worth the extra time to use semi-automated methods remains

unanswered. Boesen et al. (2004) compared several automatic

skull-stripping algorithms for accuracy, by comparing to manual

delineation, and for reproducibility, by comparing performance

across repeat scans of a single subject. These results found that

McStrip (Rehm et al., 2004) outperformed the other algorithms

studied both in terms of accuracy and reproducibility. In the current

study, the skull-stripping algorithms were compared in terms of

their impact on tissue segmentation variability; BSE was found to

lead to less variability than the other skull-stripping algorithms.

However, in the current study, the overall impact of skull-stripping

algorithms on tissue segmentation variability was small. Schnack

et al. (2004) recently computed intraclass coefficients (ICCs) for

several volumetrics on six subjects on six different scanners in

order to quantify the reproducibility of volumetrics across different

hardware. The aim of this study was to evaluate to what extent data

could be combined across hardware, and also to calibrate analysis

procedures from each site to increase the reliability (Schnack et al.,

2004). This study described an optimization process that is

relatively straightforward to implement; the ICC is an interpretable

metric of variability, and these data explicitly show that optimi-

zation, or calibration, is important because there is a significant

impact of calibration on the ICCs of volumetrics. Each of these

studies examined how optimizing one aspect of either data

acquisition or data analysis could influence the accuracy and/or

reliability of structural neuroimaging. In the current study, several

aspects were examined at once to examine how each of these

factors can impact the reliability of tissue segmentation and the

resulting computed volumetrics. However, it should be noted that

the current study only examined reliability; future studies can be

done to assess the impact of these factors on the accuracy of tissue

segmentation.

The primary goal of the current study was to outline a general

strategy that can be used to optimize tissue segmentation

reliability. This strategy has three main steps: (1) collecting

multiple T1-weighted images on a single subject; (2) creating an

average of all of the scans to be used as a ‘‘gold standard’’; and

(3) comparing the segmentation maps of the individual volumes

to that of the gold standard by computing a d-prime. While in the

current study this strategy was implemented to evaluate several

sources of variability at once, the same strategy could easily be

adapted to evaluate only one or two sources of variability. For

example, in order to choose among several pulse sequences,

multiple images can be collected on one subject with each pulse

sequence. The gold standard can be created by averaging the

multiple scans. Then all of the individual volumes and the gold

standard can be segmented with the standard analysis packages

used in the laboratory. D-primes can be computed for each pulse

sequence, and the pulse sequence that has the largest d-prime is

 http:\\www.bic.mni.mcgill.ca\brainweb\ 
 http:\\www.cma.mgh.harvard.edu\ibsr\ 
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the one that is optimal for that particular scanner in terms of

minimizing variability. A similar approach can be used if only

one pulse sequence is available, but the investigator wishes to

choose among several tissue segmentation algorithms. However,

caution must be used in this approach; one cannot just blindly

choose the maximum d-prime without also considering the

overall accuracy of the approach. For example, see Fig. 5, which

shows the segmentation of images for the pathway that had the

maximum d-prime for WM classification. Although this pathway

yielded results that were less variable than other pathways, the

resulting classifications were clearly inaccurate in that the basal

ganglia and thalamus were consistently labeled WM, not GM.

The optimal pathway is one that both minimizes variability while

also achieving acceptable accuracy.

In the current study, two pulse sequences, three noise reduction

algorithms (four total parameter sets), four skull-stripping algo-

rithms (six total parameter sets), and four segmentation algorithms

(ten total parameter sets) were evaluated simultaneously. The main

effects of each acquisition/processing step were each examined

(Tables 3–6, and Figs. 7 and 8). Post hoc statistics showed that, for

this particular scanner, the MPRAGE pulse sequence performed

better than the SPGR pulse sequence. For most of the t tests, the

SUSAN algorithm performed better than other noise reduction

algorithms; although the MNIN3 noise reduction algorithm was the

only one that had no failures with skull-stripping programs. The

differences among skull-stripping algorithms were small, and many

of the tests were non-significant. The impact of segmentation

algorithms was the largest; the methods that started with an a priori

estimate (e.g., SPM50 and EMS50) performed the best on GM, and

the FAST algorithms performed the best on WM. Generally,

choosing a different parameter for a given algorithm led to less

variability than choosing a different algorithm (e.g., BETA and

BETB were more similar than BETA and WS). Also, there is clear

evidence that the optimal strategy for measuring GM is different

from the optimal strategy for measuring WM. Furthermore, the

optimal strategy as determined by global GM measurements may

differ from the optimal strategy for deep brain GM measurements.

Therefore, the intended use of the segmentation data should play a

role in the optimization process. Overall, the GM d-primes were the

lowest, indicating that the classification of GM is the most variable;

while the WM d-primes showed the most variability, indicating that

the classification of WM is most affected by optimization.

All segmentation algorithms face the same problems of partial

voluming effects and noise in the data. The average cortical GM

thickness of the human brain is 1.5–4 mm, whereas the typical

resolution of a T1-weighted image is 1.0–1.5 mm. In some

anatomical regions (e.g., thalamus and cerebellum) the partial

voluming effects are even worse, leading to even less contrast

between tissue types, particularly between GM and WM, making

these regions particularly difficult to segment accurately. One way

to address this issue is to use anatomical knowledge by initializing

the segmentation process with a priori probability images of GM,

WM, and CSF. One potential drawback of this approach is that the

initialization step depends on co-registering an individual image

with the template of the a priori images. This will necessarily lead

to a higher degree of accuracy for subjects whose anatomy is more

similar to the template anatomy. It is beyond the scope of this study

to evaluate the degree to which the benefit of anatomical

knowledge offsets potential biases due to co-registration; however,

two algorithms that use a priori information were included in this

study—EMS and SPM. Both of these algorithms yielded the most
reliable estimates of GM classification. Notably, the threshold of

50% was more reliable than higher thresholds (75% and 90%).

Many structural neuroimaging studies use t tests to compare

volumetrics between two groups (e.g., patients and controls). The

power of a t test depends on the effect size and the sample size,

where the effect size is defined as the ratio between the difference

in means and the pooled standard deviation (Cohen, 1977). If the

data analysis method introduces variability into the volumetric

estimates, then this will increase the standard deviation of values

within each group, effectively diminishing the effect size. There-

fore, by optimizing the data acquisition and analysis procedures

that lead to volume estimations, the variability due to volume

estimation can be reduced, thereby increasing the power of the

study to detect anatomical differences. The degree to which

optimization will increase the power is an empirical question that

will most likely vary across studies. However, regardless of the

study, the power will almost always be increased by the

optimization of data acquisition and data analysis procedures.

The d-prime is a fairly simple calculation that can be implemented

in any study. All that is required is to collect multiple scans of a

single subject, varying the factor(s) of interest. At the stage of

study design, d-prime computations can be used to choose optimal

data acquisition parameters. After the data has been collected, d-

prime computations can still be used to choose optimal data

analysis parameters. In some cases, optimizing tissue segmentation

can yield volumetric measurements that are six times less variable.

The results of this study indicate that the greatest gains can

potentially be made by optimizing the tissue segmentation

algorithms themselves, and the second most efficient optimization

is on the data acquisition protocol.
Conclusion

This study examined a method for comparing the reliability of

several acquisition/analysis pathways that lead to tissue segmenta-

tion. This work has implications for several types of structural

neuroimaging studies, which can benefit from such optimization.

Several conclusions can be drawn from this study; in particular, the

intended use of segmentation data should play a role in the

optimization process. For example, the optimal pathway for GM

differs from the optimal pathway for WM. Also, it is not sufficient

to simply blindly choose the most reliable pathway without also

considering the accuracy. Ideally both accuracy and reliability

should be optimized simultaneously. Several results from this study

indicated that the biggest improvements in the reliability can be

made by optimizing the segmentation algorithms themselves,

secondarily through optimization of acquisition protocols. The

results also showed that the classification of GM is the most

variable, while the classification of WM is the most sensitive to

acquisition/analysis choices. Finally, it was demonstrated that the

optimization of the acquisition/analysis protocol on the basis of

tissue segmentation reliability directly leads to a less variable

estimation of GM lobe volumes.
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